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INTRODUCTION

In a number of recent papers, in particular by Martin, Symonds and co-

workers [1966-1969] approximate solutions have been sought to the response of

plastic structures subjected to dynamic loading, and general theorems for the

rational choice and the evaluation of the (average) reliability of such approx-

imations have been established.

However, the applications of these theorems have been mostly limited to

impulsive loading problems (i.e. problems in which an initial set of velocities

is imposed on the structure). When other loads were allowed to act on the struc-

ture, they had to be below the static collapse value [Oien-Martin, 1965].

Only very recently the procedure has been extended to single-pulse loading

problems, i.e. problems in which a high load is suddenly imposed on the struc-

ture, and then either is suddenly removed after a given time-interval or decays

more or less slowly, tending to zero as time increases. (Such sort of loading

can be used for instance to approximate blast loading.) It has been shown that

a rational approximation, although less satisfactory than for the impulsive load-

ing, is possible in this case also, at least within certain limiting assumptions

that may be considered satisfied in most actual instances [Augusti, Martin,

O'Keeffe, 1969].

Independently, very similar results were obtained by Kaliszky [1968]* who, how-

ever, lacked a general measure of the approximation, although in the several ex-

amples in which he compared his approximate results with the exact ones a very

good agreement was shown.

The writer is grateful to Dr. Kaliszky for letting him have an interim copy of
the full text of this paper.
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As an essential feature of all the works quoted above, the loading program

is such that the motion of the rigid-plastic structure lasts only a compara-

tively short time, after which the structure comes to rest in a permanently de-

formed configuration. Essentially, no strain reversals take place during the

response.

In another important class of dynamic problems, a structure may be subjec-

ted to a comparatively large number of repeated and/or reversed loads, as for

instance during most strong earthquakes. Problems of this type have been so

far treated almost exclusively by numerical means, especially in the plastic

range of structural behavior, and no general theorems have been established.

The study of which this report presents the first results~was undertaken

with a view of eventually filling this gap and furnishing procedures for the

dynamic analysis of plastic structure under any loading history. Therefore,

rather than solving particular problems, the attention is focused on recogniz-

ing general characteristics, outlining avenues of approach, and so on.

Unfortunately, it has been proved impossible to apply to general loading

histories the simple approximate solutions suggested for impulsive and single-

pulse loads, while keeping a rational measure of the approximation involved.

A substantial portion of the report deals in particular with periodic load-

ing of structures which behave symmetrically with respect to the sign of the

loads; it will be possible to derive some rather general results on the rigid-

plastic response in this case, without any qualifications of the structural

type. However, the symmetry assumptions are particularly realistic in the case

of rectangular frames subjected to horizontal loads, and specific results per-

taining to these structures are also presented, including multi-degree of free-

dom response.
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The whole study has so far been limited to rigid-perfectly plastic be-

havior only: some aspects of this assumption are briefly examined in the Con-

clusions,

1. SINGLE-MECHANISM RESPONSE OF A RIGID-PLASTIC STRUCTURE TO DYNAMIC LOADING

Consider a rigid-plastic structure, initially at rest, and subjected to

variable loads P. , proportional to one time-dependent parameter E only:

PX(t) = E(t)Of (1.01)

where is a (fixed) reference value of the Zth load (force or couple, con-

centrated or distributed). For convenience of the following discussion, it

will be assumed that P 2, has such dimensions that E(t) is an acceleration.

Within this definition, the "loading" can be constituted by movements of

the external restraints of the structure, in such a way that the distribution

of their accelerations is constant with time. In this case, E(t) measures

directly the acceleration.

Just to fix ideas, consider the very simple example in Fig. 1.1: it is

evident that an applied horizontal force EP and a horizontal ground acceler-

ation u = -E are equivalent if the reference value is chosen such that P =m.g

This section will deal with the case that the mechanism (i.e. the shape or

mode) of the plastic response of the structure is uniquely determined. There-

fore, the fields of displacements and strains, of velocities and strain rates,

of accelerations and strain accelerations, are also uniquely determined through-

out the structure to within a single multiplying factor, which depends on time

and can be taken respectively equal to the scalar displacement u , velocity

and acceleration u of an arbitrary point of the structure.
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Let us indicate by k+ and -k- the values of C (respectively, posi-

tive and negative), corresponding to static collapse of the structure. It is

immediate to recognize that the equations of (rigid-plastic) motion of the

structure, with the given definitions and assumptions, reduce to

u - k+ when u 0

= + k- when u 0 (1.02)

u=0 when u = 0 and -k k+

For instance, the motion subsequent to an impulsive loading in the positive-

Sdirection* shows a constant deceleration and a linear velocity

S= k+ -k+t 0 (1.03)

and a total response time
u

tf (1.04)
f k+

where Uo is the (imposed) initial velocity at t = 0 . At all times t - tf

the third Eq. (1.02) is verified, and the structure remains at rest. If the

response mechanism varies in time, the above considerations apply to the "mode

approximation" [Martin and Symonds, 1966].

1.1 Periodic Loading; Case I

The assumption of symmetric structural behavior with respect to positive

and negative loads implies

k+ = k- = k (1.05)

In a • vs. t diagram, the impulsive load can be represented as a delta
function.
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It will now be further assumed that the loading is periodic-symmetric, i.e.

E(t + T) = E(t)
(1.06)T

V(t + P - E(t)

where T is the period. An example of loading vs. time diagram of this type

is shown in Figs. 1.2a and 1.3a, where the accelerations given by Eqs. (1.02)

(for structure initially at rest) are shaded.

In fact, the structure does not yield unless the loading function crosses

either of the E = ±k lines. Without lack of generality we can assume that

F(t) crosses the E = +k line first, say at time t =tll , and is larger

than k for a finite time interval thereafter. According to the previous dis-

cussion, the acceleration u is given by the first Eq. (1.02) as long as

uf udt 0 (1.07)

i.e. for times t comprised in the interval

tl 11< t < t 12 (1.08)

where t has been already defined, and t 1 2  is determined by

12) 1 u dt (1 - k) dt = 0 (1.09)

tll t11

For the simple load-time diagram sketched in Figs. 2a and 3a, Eq. (1.09) implies

the equality between the two shaded areas A and AI2 *

At time t = t 1 2 , a discontinuity of u takes place. Either of two con-

ditions can be realized, as exemplified in Figs. 1.2 and 1.3 respectively : namely,

either E(t 1 2 ) a -k (Fig. 1.2) or E(t 1 2 ) < -k (Fig.l.3). In the first case,

which will be indicated as Case I from now on,
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u(t) = u(t) = 0 for t 1 2 < t 13 (1.10)

At t 13, determined by

g(t13= -k (1.11)

or, equivalently, by
T

t 13 = tn + •(.'

a phase of motion with negative velocity starts, and so on.

A periodic motion with period T is thus activated, as qualitatively

illustrated by Fig. 1.2:

T
t12 t 11 t 14 t13 = n2 - nl = n4 - n3 <2

A 11 A12 A 13 A 14 A nl A n2 A n3 A n4 = maxl (1.12)

(n = 1,2,3...)

The displacement u (periodic but not symmetric) varies between 0 and

a positive value Au , equal to the area of each of the ;-pulses:

0 u(t) s Au = u dt : - ; dt (1.13)

tnl itn3

It is of interest to note that the total dissipated plastic work (which

could cause failure of the structure because of large-strain fatigue) is pro-

portional to the accumulated absolute values of the displacements*. Then

By assumption, the mechanism is unique; therefore the strain-vectors do not
change direction during the motion. When they change sign, the associated
stress points jump to points symmetrical with respect to the origin of the
stress axes, which by assumption is a center of symmetry for the yield sur-
face. It will be seen in Section 3 that this behavior implies that each
stress point is on a principal direction of the relevant yield surface.
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after n cycles, the dissipated plastic work is given, to within a positive

factor, by

u = 2nAu (1.14)

Therefore, Au measures both the maximum absolute displacement and the

plastic work dissipated in each cycle.

1.2 Periodic Loading; Case II and "Steady State" Response

On the contrary, if

C(tl2 -k (1.15)

the case of Fig. 1.3 is verified, which will be indicated as Case II in the fol-

lowing. The initial instant of the first negative-velocity phase, t 1 3 , coin-

cides with the final instant of the first positive-velocity phase, t12

12 13 11 T 2 (1.15')

the acceleration is given by the second Eq. (1.03) for

t 1 3 <t <t1 4 =t 2 1  (1.16)

where t 1 4  is defined by

u(t 1 4 ) = f dt = (t + k) dt = 0 (1.17)

t12 t12

(i.e., in the simple example in Fig.l.3a, by the equality of the areas A13 and

AI4 ) and t21 is the starting time for the second cycle of motion.

It can be proved that, provided k > 0 ,

t21 t 11 T 2 i.e. E(t21 k (1.18)
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therefore, beyond t 2 1 , the acceleration is again given by the first Eq. (1.02)

and the motion continues as sketched in Fig. 1.3.

The following inequalities can also be easily proved (the relevant quanti-

ties being defined in Fig. 1.3a, b, c, all as positive quantities):

Al > A2 > .... >An > ..
A11 >A21 Anl ..

1I3 < 23 < .. A3 <.... (1.19)

A 13 A 23A n3
A21 > A13 .... nl > A(n-l)3

Au11 > Au2 1 > .... > AUnl > ....

Au12 < Au22 < .... < A n2 ..... 20)

Au21 > Au12 ;.... ; Aunl > Au(n-1)2

It is then intuitive that the motion u(t) tends to a periodic motion uS(t)

with

A lim Anl = lim An3
n-) i n-3.

(1.21)

As = lim Aunl = lim Aun2
n-*w nl < n

In order to demonstrate this intuitive result, consider the situation in

Fig. 1.4. The loading diagram W(t) and the value of k are the same as in

Fig. 1.3, but initial values of acceleration u and velocity u have been0 0

assumed as follows.

The values of

t ;t1=t - t = tl + T etc. (1.22)

11 e11 21 11

have been determined first from the condition
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A* = A* = AA * = A A* A* A *' A* (1.22')
11 12 13 14 ni n2 n3 n4

Then i and u have been assumed
0 0

i = -k
0 (1.23)

=- ft~ (4 + k) dt

0
so that

U(t*l) 0 o (1.24)

The ensuing motion u(t) , shown in Fig. 1.4, is periodic. The initial

displacement u0  is arbitrary; in Fig. l.4c it has been chosen such that

Umin = 0 , so that It*
0 < u(t) , Au* n2 = dt (1.25)

n1

similar to (1.13).

The two motions in Figs. 1.3 and 1.4 correspond to the same loading and

different initial conditions. Therefore, according to Martin's uniqueness

theorem [1966], their velocities tend to each other as time increases. In

other words, the actual motion u(t) tends to a periodic motion uS(t) that

can be determined as in Fig. 1.4 to within an additive constant, u. ;

and Aus in Eqs. (1.21) are given by

A A* = A

ns n2 (1.26)

Au s :Au*

The motion u S(t) will be indicated as the steady state motion (or re-
sponse); the actual (limit) value of u m as the final residual displacement

min

u R
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Note that the rapidity of convergence of u(t) to u (t) , for a given

load-time diagram, decreases with decreasing k . In the limit, if k = 0 ,

a motion with a periodic (but not symmetric) velocity and unbounded displace-

ments is activated from the first cycle*.

After a sufficiently large number of cycles the large strain fatigue can

be computed on the periodic motion with good approximation

u(n) = 2nAu* (1.27)

The residual displacement after n cycles uRn is given by (Fig. 1.4)

n
URn = Yi(AUil - Aui 2 ) < n(Aull - A12 ) (1.28)

1

th
The total displacement during the n cycle is limited by

uR(nl) <'u(t) s uR(n-l) + Aunl (tn1 $ t $ tn4) (1.29)

After a sufficiently large number of cycles, Eq. (1.29) is well approximated by

uR % u $ uR + Au* (1.29')

where the final residual displacement u R is the limit

uR = lim u Rn = l.(Au. 1 - Aui2) (1-30)

Finally, note that if in Figs. 1.2, 1.3, 1.4 the sign of the C-diagrams is

changed, the signs (and the signs only) of the u and u diagrams change also.

In conclusion, the response of a rigid-plastic structure, under assumptions

(1.05) and (l.06))is (or tends to) a periodic motion of finite amplitude and

One cycle of such a response is illustrated in Fig. 4.7 at the end of the re-
port.
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the same period as the forcing function C(t) . At each instant in which u

becomes zero, there is a discontinuity 6u of the acceleration,

-2k s 6u s 2k (1.31)

There is no resonance effect: the characteristics of the response are

monotonic functions of the characteristics of the load input.

It is possible to generalize the previous results to periodic but not sym-

metric loading (only the first of Eqs. (1.06) holds) and/or non-symmetric struc-

tural behavior (k+ • k-) . In these cases, a permanent displacement is added

in each loading cycle, and the response is equal (or tends) to a motion sum of

a periodic plus a linear term. This behavior will not be investigated further,

although in Section 4 a sort of induced asymmetry of structural strength will

be considered.



-12-

2. "MULTI-MECHANISM" RESPONSE AND "SHEAR FRAMES" SUBJECTED TO HORIZONTAL

LOADS

All the results in Section 1 were obtained in the assumption that the

mechanism (i.e. the "shape" of the deformation field) did not change in tin, al-

though some of them (and in particular the periodicity of the steady state re-

sponse to periodic loading) are indeed valid also if this assumption is lifted.

In the latter case, graphical operations essentially analogous to those

illustrated in Figs. 1.2, 1.3 and 1.4 would give the actual and the periodic

response. However, the accelerations corresponding to the different degrees

of freedom are given by relations rather more complicated than Eqs. (1.02) and

different in the different instances, so to make a general discussion very in-

volved if not impossible.

In fact, the departure of the response from the simple single-mechanism

type can take place in so many ways that a unique formulation does not seem

possible.

To illustrate this point, it is sufficient to consider a uniform simply-

supported beam of limit moment M , once loaded by a uniform dynamic load0

&(t)q (Fig. 2.1a) and once loaded by a central concentrated force t(t)P

(Fig. 2.1f). In the first case, as long as k < & s 3k , the acceleration and

moment diagrams look like in Figs. 2.1b and 2.1c respectively; but as soon as

S> 3k , the central plastic hinge spreads into a plastic zone of finite length

At , the acceleration (not velocity!) and moment diagrams becoming qualitatively

as shown in Figs. 2.1d and 2.le respectively. In the case of Fig. 2.1f, at

first the acceleration diagram looks again like in Fig. 2.1g; successive stages

(I, II, III) of the bending moment diagram are illustrated in Fig. 2.1h. At a

certain value of E , the minimum (max. negative) moment M* reaches the negative
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limit moment -M , and new plastic hinges are formed: further acceleration0

and moment diagrams look like in Figs. 2.1i and 2.1j.

Therefore, instead of attempting a general discussion of the multi-degree-

of-freedom dynamic rigid-plastic behavior, the present section deals with a

specific structural type and loading, namely rectangular multi-storey shear

frames subjected to horizontal ground motion (as shown in Fig. 2.2), for which

the symmetry conditions (1.05-06) are verified and particularly relevant, and

moreover the motions of the several degrees of freedom are determined by re-

markably simple relationships.

The following discussion, interesting in itself as the solution of an im-

portant structural problem, is also useful as an illustration of the techniques

which could be employed for other analogous problems.

The behavior of the multi-storey shear frame can be assimilated to that of

the simple-supported beam in Fig. 2.1f, in that a second degree of freedom is

activated by formation of new plastic zones (or plastic hinges), while in the

beam of Fig. 2.1a the shape of the deformation fields is altered by the spread-

ing of the plastic zone. Another possibility, substantially different from both

instances in Fig. 2.1, will be illustrated in Section 3.

2.1 "Shear Frames"; Yielding of One Storey

We define by shear frame a rectangular multi-storey frame such that, under

horizontal loads acting on the beams, the plastic hinges form in the top and

bottom sections of the columns. The rigid-plastic deformations of such a frame

are fully specified by N independent variables ui , where ui is the right-

ward displacement of the ith floor with respect to the (i-l)th and N the num-

ber of storeys (Fig. 2.2).
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The shear strength of the ith storey
J.

1

V i = 2--h.0 (2.01)
1

is supposed known (and equal in both directions), while the number of columns

Ji is irrelevant, and can indeed vary from one storey to another, as the other

quantities on the right side of Eq. (2.01). Only plane frames are studied in

this section, while three-dimensional shear frames will form the object of Sec-

tion 3.

The frame will be assumed to be subjected to a horizontal ground movement

whose acceleration

u: -•(t) (2.02)
g

is a known function of time.
The assof he th

The mass of the i floor is mi , and the mass of the columns is negligi-

ble in comparison. Then the equivalent loading on the frame is constituted by

a set of horizontal forces mi• acting at each floor level, and the total in-

ertia forces are*

i
F. mi(• - •. ii) (2.03)

The total shear at the ith storey is given by

N N 2
V. = F£ = ,[m(• - •. ij)] (2.04)

.thLet us assume that at a certain instant the i storey, but none above it,

is deforming plastically, with a positive velocity 1i , i.e.

Cf. the simplest particular case in Fig. 1.1.
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S i

.j ii. = 1 . for k > i

V. = V (2.05)
1 0

0 < V < V for £ i

Because of (2.01) and (2.04), Eqs. (2.05) implies

V. V

.. N (£ i) (2.06)
N N
Yj mj Yj mj

This relation, which is independent of the ground acceleration -• and

th
of time t , shows that plastic yielding starts in the p storey, defined by

V
k - min (i = 1,2.. .N) (207)

p N- '
S. mi [.Ym.

and cannot move upwards along the frame. And if (2.07) is satisfied by p = 1

(i.e. by the first or ground storey), as it is very likely to be in an actual

frame, then the motion of the (rigid-plastic) frame involves only one degree of

freedom: the results of Section 1 apply in full and no further discussion is

necessary for such a frame.

It is worthwhile to note that this condition can be verified just because,

at every storey except the first, there are infilling walls and other non-struc-

tural components which increase the actual shear resistance V . .

Although the considerations above have been formulated with reference to a

specific load condition, they do remain valid for other horizontal loads under

not too restrictive assumptions, as long as the definition of "shear frame' holds.

In conclusion, the response of a rigid-plastic building frame to horizontal loads
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is very likely to involve yielding of the first storey only: use of this con-

clusion as a greatly simplifying assumption will be of enormous help in the

study of other aspects of rigid-plastic frame behavior in later sections of

this report.

2.2 "Shear Frames" with More Storeys Yielding

Consider now the case in which Eq. (2.07) is satisfied by p > 1 . This

pth storey yields as soon as V(t) crosses either of the lines E = ±k ;p

again it can be assumed without lack of generality that t = +k occurs first,p

say at t = t11  (Fig. 2.3). For t >, t , and as long as only the pth storey11

yields,

V
Sop

Ij j (2.08)
pJ

u. 0 (i p)1

These equations hold as long as*

p-i N
V. = T .j m. + ( U - Up) •j m. < Voi (i < p) (2.09)

Let

oq =0 =.m. k (i (2.10)
p-i p-i qIj m j I. M.

and note that, as it can be easily proved, Eq. (2.07) implies

k > k (2.11)q p

Since it has been already demonstrated that yielding cannot "move upwards,"
it is only necessary to consider storeys below the pth.
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th
If E(t) remains always smaller than k , no other storey but the pq

is ever yielded, and the response of the frame is again a one-degree-of freedom

motion, for which the results of Section 1 apply.

Suppose now that a certain time, say t 1 5  (Fig. 2.3),

kt 15 k q (2.12)

Then, Eqs. (2.08) hold only in the interval

tl 11 t % t 15 (2.12)

while for t , t 1 5 it can be easily derived

=k -k
p q p

= E -k (2.13)
q q

u. 0 (i p,q)

i.e. two storeys are yielding: in other words, two "simple mechanisms" are

active at the same time; the acceleration of the first mechanism remains con-

stant, while that of the second is graphically immediate (dot-shaded in Fig.

2.3).

It would be quite simple to derive further values of the ground accelera-

tions which activate further mechanisms, and to write the relevant expressions

for the storey accelerations, analogous to (2.13).

Suppose instead that E(t) satisfies the periodicity conditions (1.06) and

that its maximum value Cm is such that only the two already considered mecha-

nisms can be activated.
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The motion beyond t > t 1 5  is governed by Eqs. (2.13) as long as

jq = dq at O 0 (2.14)

t15

i.e. up to the time t 1 6 , defined by

I t 16 (2.14')

15

or graphically, in the example of Fig. 2.3,

A2 = A3 + A (2.15)

At t = t 1 6 , the velocity of the first mechanism is

p(t16 ft16 p dt = A1 + A3 ;(2.16)

ft11

Eqs. (2.08) are again valid beyond t , up to the instant t12 defined by

6t15 t16 t 12

t 12 up dt = (1 - kp) dt + f (kq k dt + ftl1 (E-ydt= 0

11l 11 tlt15 1t6

(2.17)

or, graphically, by

A + A = A (2.18)
1 3 5

But Eqs. (2.15) and (2.18) imply

A1 + A2 = A4 + A5 (2.19)

i.e. the time t 1 2 , at which the velocity of the first mechanism Up becomes

zero, can be determined ignoring the existence of the second mechanism. (This

result holds for any value of U(t12 ) .)
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The further motion beyond t12 can be easily constructed by similar

arguments. Analogous to Section 1, if

>(t12 ) -k , (2.20)

for the assumed periodic-symmetric C(t) , the negative velocity pulse be-

gins at

t 1 3 =t + T t1 2  (2.20')

and a periodic motion is thus started, with the same period as the forcing

function C(t) , and comprising intervals in which none, one and two mecha-

nisms are active.

If Eq. (2.20) is not satisfied, the same arguments developed in Section

1, prove that the response tends to a steady state periodic motion whose ac-

celeration diagrams can be most easily determined taking advantage of the

property (2.19), as shown in Fig. 2.4.

Namely, the instants

t~l , t*2 = t* T •, t= t + T ,..(2.21)

at which us = 0 , are first determined by the condition
p

A* + A* : A* + A* = A* + A* A=* + A* (2.22)
1 2 4 5 6 7 9 10 **(.2

The second mechanism, in each cycle of the steady state response, is activa-

ted at t = t* and t = t , which coincide with t*' and t* if
n5 n7 nl n2

(l) = -•(t 2 ) k (2.23)

as in the example in Fig. 2.4. This second mechanism stops at the instants
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t* and tT t* + (2.24)
n6 n8 n6 2

given by

A*=A* + A* = -A A* + A* (2.24')

and certainly distinct from t* and t*
n2 (n+l)l

The derivation of the response of each relevant mechanism, discussed

above, leads for each mechanism to the same conclusions reached in Section 1.

Finally, note also that the symmetry of the frame behavior with respect

to the sign of the load implies only that positive and negative limit shear

forces (2.01) are equal. This condition is less stringent than the general

one; for instance, it is satisfied if the moment-axial load yield profiles

of the columns are symmetric with respect to the axial load axis but not with

respect to the origin (as is the case for reinforced concrete columns); and

it may be satisfied even if the individual columns have different positive

and negative limit moments, provided they are suitably arranged.

By the same token, we can add constant loads on the structure (e.g. ver-

tical loads on the columns), and thus change only the numerical value of M .0]

and, consequently, of V . (2.01), provided the symmetry of the latter with

respect to the variable (horizontal) loads is not affected. (This conclusion

does not take into account the possible instabilizing effect of the vertical

loads, which will be considered in Section 4).
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3. THREE-DIMENSIONAL "SHEAR FRAMES" SUBJECTED TO HORIZONTAL LOADS

As it has been pointed out in the previous section, in most actual in-

stances of rigid-plastic shear frames only the first storey yields under hori-

zontal loads. For the purpose of the present study, the frame thus reduces to

a single rigid mass

N
m = m. (3.01)

supported by a number of rigid-plastic columns. The inertia forces, being ap-

plied at a finite height over the top of the columns, cause differential axial

loads in the columns: if the effects of these loads are neglected (as they

have been implicitly in Section 2), the rigid mass can be further reduced to a

platform of vanishing depth (Fig. 3.1).

This Section 3 is concerned with the behavior of a frame thus simplified,

when the columns are not all complanar. The static collapse under a horizontal

force P is discussed first in Subsection 3.1, then Subsection 3.2 deals with

the dynamic response to a time-dependent force P or a horizontal ground ac-

celeration u . Note that the loads P and u have been underlined (as all
-g - -g

other relevant quantities in this section will also be), in order to stress

their two-component vectorial character.

The plastic dynamic behavior of three-dimensional frames of a similar type

has never been examined before, to the writer's knowledge, although it seems to

be a realistic model of buildings in which architectural or functional reasons

prevent bracing in any vertical plane, at least at the first (ground) storey

level. Therefore, the problem studied herein, besides being an interesting ex-

ample of a multi-mechanism response of a type not yet considered, is also of di-

rect technical relevance, and well worth some further attention. Although only
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preliminary results are presented, there seems to be no conceptual difficulty

in their application and generalization. In fact, at least under some limita-

tive conditions, the rigid-plastic hypothesis already allows to derive some

rather general qualitative indications and to define some properties essential

for further analyses of a more quantitative nature.

3.1 Static Collapse

The static collapse of the frame in Fig. 3.1, which has been the object of

recent works by Harrison [1968] and Wittrick [1968], can be described as an ele-

mentary rotation d? of the rigid platform about a vertical axis c . In the

following, it will be assumed (as already done by both Harrison and Wittrick)

that the torsional strength of the columns is negligible in comparison with their

bending strength in any plane. It is then very easy to find the collapse value

P and the line of action, f , of the force P associated to each axis of ro---O

tation c (although sometimes P is not defined uniquely for a given c , as-O

it will be seen).

Let C and B. (Fig. 3.2a) be the traces on a horizontal plane of theI
.th

axis of rotation c and of the axis of the j column respectively: let fur-

ther cMj be the yield profile for biaxial bending of the same column*. The

axes of the plastic hinges developing in the top and bottom cross-sections of

the column are parallel to CB. ; the corresponding yield moment vectors M]0

are obtained from the normality rule (Fig. 3.2a); the shear force in the yield-

ing column is orthogonal to the moment vectors and of magnitude

M .
Vo. = 2 0-- (3.02)

0] h

for a column of length h built-in at both ends.

Yield profiles of structurally significant sections, including the effect of
axial load, have been recently presented by S. Santathadaporn and W. F. Chen
[1968].
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Alternatively (Fig. 3.2b), the moment yield profile can be rotated by 900

and divided by h/2 to obtain the shear yield profile Vj of the jth column.*

The normality rule can then be applied directly to obtain the shear yield force

V oj from the elementary displacement

du. = dp x CB. (3.03)
-] - -J]

This alternate procedure is slightly more general, because it includes the cases

in which the shear yield profile is obtained less immediately from the moment

profile (e.g., when the bottom section of the column is pinned in one direction

only, or when the top and bottom sections of the column are different from each

other).

In the more general situation, the vectorial sum of the Vo. gives uniquely

the collapse force associated with C

P = Y. V (3.04)
-o J-01

Indeterminacies arise whenever a shear yield profile has a straight segment nor-

mal to du. , and in the particular case of C coinciding with one of the B.-J

say with B nn
th

In the last case, the n term in the sum (3.04) is only required not to

violate $Vn and is otherwise arbitrary. Wittrick [1968] has shown that this

situation arises when the foot of the perpendicular from B to f falls withinn
th

a plane domain, called safe zone of the n column and given by a very simple geo-

metrical transformation of 0Vn

The shear yield profile thus defined is not connected with a "shear fail-
ure" of the column, but with the "shear force" which, at the collapse limit,
equilibrates the moments in the plastic hinges formed at the ends of the col-
umn.
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On the other hand, if C is at infinity, i.e. if the collapse motion of

the platform is a translation, all du. are equal, say to du : however, the
-I

associated V . are in general different and not parallel to each other. By-o]

varying the direction of the translation du , the value and the line of action

of P (3.04) are changed. If the P associated with all possible transla--O -O

tions are drawn with origin in the same point, their end points describe a

closed convex curve, symmetric with respect to the origin, that can be called

total shear yield profile (or more simply yield profile) of the frame 4p P: the

normality rule between 4p and du holds.

On the contrary, it does not appear possible to give an evident geometrical

condition or property satisfied by the lines of action f of P corresponding-O

to translational collapse. This is shown by the comparatively very simple ex-

ample in Fig. 3.3, pertaining to a platform supported on three I-section columns

B1 ' B2 , B3 whose yield profiles are DV, , 0V2 5 0V3 respectively: each

translation vector du. and the corresponding line f. are labeled by the same-1 1

suffix.

Fortunately, in a number of instances of practical interest a point C ex-p

ists such that, when f passes through C with any inclination, the collapsep

motion is a translation. Such a point C can be well defined as the plasticP

shear center C of the frame. (Note however that C is defined by a purelyp p

sufficient condition, which does not exclude that a P with line f not throigh-O

C may also cause translational collapse.) Examples of C are as follows:p p

a) if the plan of the columns has two axes of symmetry, C co-p

incides with their intersection;

b) if the shear yield profiles of the single columns ,Vj are

all similar to each other, say in ratios s. , and similarly
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oriented, any du is (or can be) associated with yield forces

V . parallel to each other and in ratios s. : C is there-
-0:3 3 P

fore the centroid of masses proportional to s. concentratedI

in B. . (This example is always verified when the *Vj are

circles.)

c) if the OVj are rectangles defined by

Iv j1 I Voxj
(3.05)

yjl oyj

C is given by the intersection of the resultants of V . andp ox)

Vyj .

3.2) Dynamic Behavior

The behavior of the frame in Fig. 3.1, subjected to a time-dependent force

applied in the centroid CG

P = m E(t) (3.06a)

or to a horizontal ground acceleration

.u =-Y(t) (3.06b)
-- -

will now be examined. For the sake of simplicity, in the following discussion

it will be assumed (i) that the magnitude and the sign, but not the direction

of C , vary in time, and (ii) that the plastic shear center C exists and- p

coincides with the centroid of the platform CG (as it does in example a) at

the end of Section 3.1). The frame is thus loaded at any instant by a total re-

sultant force applied in the plastic shear center

F = m(• - u) (3.07)
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where u is the acceleration of the platform relative to the base plane (Fig.

3.4a). The motion is a translation whose instantaneous velocity u satisfies

the normality rule with respect to the yield profile of the frame 'p . In

analogy with Sections 1 and 2, it is convenient to divide the yield profile by

m ; the profile thus obtained will be denoted by 0 and its equation symboli-

cally indicated by

(k ) = 0 (3.08)

(Fig. 3.4b). Then, letting

OX = )
(3.09)

LX = u={~,i

the conditions governing the motion, analogous to Eqs. (1.02), can be stated as

follows:

a) when u • 0 and/or u • 0 , the total loading point L is

on the yield curve 0 , and u is directed as the outward

normal to 0 in L (Fig. 3.4b);

(kx ky : (= - •x' •y - Gy) = 0
Okx 1)ky x x y y

(3.10)

"" u + f (-k ) dt

Y )o ft Q-x) dto

where t is the initial instant of motion and U , U the components of
o xo yo

a possible initial velocity u . If L coincides with a pointed vertex of $D
-0

the usual well known generalizations of Eqs. (3.10) apply.
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b) when u 0 and X is not external to 0'

x " 0

(3.11)

u 0 (X E L)

All the information on the motion might be obtained from two plots, analo-

gous to those used in Sections 1 and 2, namely

a) u = - k vs. t
x ~x

(3.12)
b) u y- k vs. tyy y

where E (t) and y(t) are given and proportional to each other by assump-

tion, k (t) and k (t) are such that either (3.10) or (3.11) are verified.
X y

However, the variation of k and k with t is not known a priori and thex y

diagrams (3.12) can be in general obtained only by some form of successive ap-

proximation procedure.

For the following discussion, it is useful to define a principal direction

of the yield profile as the direction of a straight line r. through the orn-1

gin, orthogonal to the yield profile in the points of intersection I. and I!1

(e.g. nI , in Fig. 3.5a). If I. and I! are vertices of the yield pro-
1 1

file, the definition is generalized by requiring n to be comprised in the fan

of normals to the yield profile in I. or I! (e.g. n2 , 3 T5  in Fig.
1 ' 1

3.5b). Consider now a straight line ni. slightly rotated around 0 with re-

spect to ni : the tangential component 8.e of an outward vector directed along

ni can either point towards the original position ni , or away from it (e.g.,

respectively 81 and 82 in Fig. 3.5a). If the first condition is verified on

both sides of ni , it will be said that the principal direction ni is stable;

viceversa, n . is said to be unstable if the second condition is verified, at1
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least on one side. The physical reason for the use of these terms will soon

become apparent: examples of unstable principal directions are n 2 in Fig.

3.5a, n2 , 13 , 15 in Fig. 3.5b. Because of the symmetry of t with re-

spect to the origin, at least two principal directions always exist, of which

one is stable and the other unstable.

If the loading vector C is directed along a principal direction n,

also the acceleration u and the velocity u are at all times parallel to n ;

the total loading point L lies in the segment of n not external to the

yield profile. In other words, the response involves only one degree of free-

dom , the two diagrams (3.12) are proportional to each other, and the whole dis-

cussion in Section 1 is fully applicable.*

On the contrary, if E is not parallel to a principal direction, the ac-

celeration u and the velocity u change direction with time, and the motion

is a two-degree-of-freedom translation. If the vectors u at successive in-

stants are reported from a common origin 0 ,v

* . rt
0 Uu u + udt (3.13)

v - -o

0

(where a vector integral appears), their end point U describes a trajectory v,

whose tangent in any instant is parallel to the corresponding u .

As a first example, consider the response to an impulsetporresponding to an

initial velocity u applied at time t = 0 (Fig. 3.6a).** For any t > 0 ,
-0

If E is parallel to n at every storey, the developments in Section 2 are
valid for a multi-storey three dimensional shear frame as well. Otherwise,
the latter structure must be analyzed by generalizations of the procedures
outlined in this section.

**
An impulsive loading problem of a similar type, applied to a lumped-mass
cantilever beam, has been the subject of a very recent paper by Frick and
Martin [1968].
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0 , i.e. X E 0 (3.14a)

and, in the interval 0 <t <tf

u LO (3.14b)

The initial position L of L is determined by the requirement of normality0

between f and u and gives the initial tangent to the v-trajectory (Fig.-0

3.5b). From the qualitative construction of v reported in Fig. 3.6b, it is

evident that the final tangent to v is parallel to a stable principal direc-

tion. In other words, after the impulse, the total loading point L moves

along the yield curve in the direction determined by the relevant tangential

component of u ; when the motion stops, L has reached but not passed the-o

first stable point of intersection I1 .

It is thus evident that, if the direction of the impulse is slightly ro-

tated with respect to a stable principal direction, the response varies only

slightly; while even a very little deviation of the load vector from an unsta-

ble principal direction causes a large difference at least in some aspects of

the response (like the movement of L along f). In other words, the one-

degree-of-freedom response is fully reliable only when the loading vector is

directed along a stable principal direction. This property, which appears to

hold for any loading history, justifies the terms stable and unstable; however,

it is not yet clear in general terms how the variation in the movement of L

affects the structural response.*

The motion of L along 4 need not be regular or continuous. Take for

instance the most simple case of impulsive loading illustrated in Fig. 3.7.

Initially, L remains in L for a finite time interval, while
0

Note also that most of the considerations just developed with regard to the
load •-uyield profile and velocity i of this particular structural model,
apply afso to the stress vector, yield surface and strain vector in each point
of a rigid-perfectly plastic three-dimensional continuum.
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(y L 0 (-k 1 , -k 2 ) const

(3.15)

(0 < t < t 1 )

At t = t, , the velocity vector u becomes parallel to x ; L jumps to L1

then stays there while both u and u remain horizontal,

L(y 1x 0 l (0, -k 2) const

(3.15?)

(t 1 < t < tf)

The motion finally stops at t = tf The v-trajectory is constituted by two

straight segments (Fig. 3.7b); the velocity-time diagrams are immediate (Fig.

3.7c, d).

As a further example, consider a frame whose strength in one particular

direction, say x , is much larger than both the strength in the orthogonal di-

rection y , and the maximum x-component of external load, .xm In this

case, the yield profile can be approximated by two parallel straight lines (Fig.

3.8a)

ky = ±k (3.16)

and, although both X and L vary with time, u and u are parallel to y

for any loading history, i.e.

ux = x - kx 0 ; u 0 (3.17)

The motion can be studied as in Section 1 for the non-vanishing component (Fig.

3.8b)

y y - ky y T k (3.17?)

y y y y 1
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Finally, if the yield profile of the frame is a rectangle with sides par-

allel to x and y , as in example a) at end of Section 3.2, the two compon-

ent diagrams (3.12) can be studied independently of each other following the

procedures outlined in Section 1. In particular,

+k when U 0

ky = -kl when < (3.18a)

+k2 when u > 0

xk k2 when ; < 0 (3.18b)

Both x and y are stable principal direction of the yield profile, its diag-

onals are unstable principal directions.

If the maximum x-component of the load, 9xm , (Fig. 3.9) is not larger

than k2 , the response is the same one-degree-of-freedom just described with

reference to Fig. 3.8.

On the contrary, Figs. 3.9 and 3.10 describe qualitatively the steady-

state velocity under a periodic-symmetric loading history, such that both com-

ponents fall in Case II defined in Section 1.2. (Note that, by an arbitrary

choice of scale, the x(t) and y(t) diagrams have been drawn equal.) In-

spection of the velocity diagrams shows that u never vanishes: the normality

rule requires the total loading point L to jump from one vertex to the other

around the yield profile (from L1 to L2 to L3 to L4 to L1 , etc.), re-

maining in each vertex for a finite time interval, indicated at the bottom of

Fig. 3.10. The curve v , already defined, is shown in Fig. 3.9b: it is (in

the steady-state motion) a closed curve, symmetric with respect to the origin

0 .v
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The motion of L around the yield profile is slightly more complicated

if one of the component motions (or both) falls in Case I (Section 1.1), as in

the example qualitatively illustrated in Figs. 3.11 and 3.12. Namely, L
jumps from L1 not directly to L2 , but to an intermediate point L ; then

it moves gradually towards L2. in the interval (tx 2 , tx 3 ), while both ux and

x remain zero. The same happens between L3 and L4

In all described examples (Figs. 3.7, 3.9, 3.11), the jumps of the total

loadirg point L along the contour of the yield profile 0 (i.e. discontinui-

ties in the acceleration vector u LX) are connected with the existence of

straight-line segments in 0 , and the ensuing discontinuities in the points

associated with a continuously varying velocity vector.

Results essentially similar to those derived in the above discussion can

be also obtained with more general, curvilinear yield profiles, although the

actual computation of the whole motion would probably require a rather compli-

cated successive approximation procedure. It seems however possible to state

that the steady state response of the three-dimensional frame under considera-

tion, when subjected to a horizontal periodic-symmetric load, is a periodic

translation with the same period as the loading, of which three subcases can

be distinguished:

a) if the load is directed along a principal direction of the

yield profile, the response is a one-degree-of-freedom trans-

lation, parallel to the same direction;

b) if the direction of the load is sufficiently close to a stable

principal direction, the total loading point L moves in two

distinct intervals of the contour of f , and the velocity

vanishes twice during each cycle; the v-curve has an 8-shape;
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c) if neither a) nor b) are verified, the velocity never van-

ishes; L moves around the yield profile, possibly with

some jumps. The signs of the rotations of the total load-

ing point L around the yield profile 0 and of the ve-

locity point U around the v-trajectory appear to be both

determined by the sign of the angle between the direction

of • and the outward normals to 0 in the points of in-

tersections: e.g., it is clockwise when the loading vec-

tor is directed as E1 in Fig. 3.13, anticlockwise when

the load is directed as C2

Note that there is no continuity between the motions of L associated

with loads directed along an unstable principal direction and along a slightly

rotated direction.

In conclusion, the considerations developed in this section, although

still very far from practical applicability, have yielded some general indi-

cations on a two-degree-of-freedom response to dynamic load, in which the

change of mechanism is due to the interaction between two generalized stress

components and not to the formation or spreading of plastic zones. The dis-

tinction between stable and unstable principal directions can be of great in-

terest in actual problems.

It appears that successive approximation procedure could be set up with-

out excessive difficulties, for the computation of the motion of the specific

type of frames so far examined, in which it will be recalled that Cp CG by

assumption.

If Cp does not exist or does not coincide with CG , the response is

much more complicated, in that it involves a third degree of freedom, namely
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a rotation about a vertical axis. Although this problem has not been investi-

gated at all, no particular obstacle seems likely to arise in the extension of

the arguments developed above, with the obvious exception of greatly increased

computational difficulties.
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4. EFFECTS OF GRAVITY ON THE DYNAMIC BEHAVIOR OF SHEAR FRAMES

In a frame such as those examined in Section 2, at each storey level the

columns are subjected to compressive axial loads due to the weight of the upper

floors, and the limit moments Mo. are consequently modified. As already

pointed out at the end of Section 2, this effect can be easily accounted for

in the dynamic analysis developed there, just by substituting the modified

limit moments in the expressions of the frame shear strengths (2.01) at each

storey level (provided, of course, that the shear strengths are not further

significantly modified by the additional column axial loads due to the hori-

zontal loads).

The present section will rather be concerned with the combined instabiliz-

ing effect of gravity loads W and horizontal displacements u in a plane

shear frame, whose dynamic response involves yielding of the lowest storey only

and which therefore can be diagrammatically represented as in Fig. 4.1. (The

number of columns, as pointed out already in Section 2, is irrelevant). The

following discussion could easily be extended to cover analogous instability

effects in the single-mechanism dynamic responses of other structures.

With reference to Fig. 4.1 as compared to Fig. 1.1, Eas. (1.02) are modi-

fied into

-k + Gu when u> 0

+k+Gu when u< 0 (4.01)

u 0 when u 0 and -(k + Gu)O (k -Gu)

where

Sor =-u (4.02)
m g

measures the horizontally applied load, and
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V EM0

m mh
(4.03)

G =W -=

in turn, g is the acceleration of gravity.* Other expressions for k and

G would be appropriate for other structural types.

In the ý vs. t diagrams, already several times used in the present

report, the effect of gravity loads is a vertical translation Gu of the

strength interval (+k, -k), downwards when u is positive, upwards when u

is negative (Fig. 4.2).

4.1 Impulsive Load

Consider first the response to an impulsive load, i.e. to an initial posi-

tive velocity u . Eqs. (4.01) give0

u - Gu = -k (4.03)

for any t > 0 , as long as u • 0 . The solution of Eq. (4.03), with the ini-

tial conditions

u(O) = 0 ; () u > 0 (4.04)

yields

U k ( - cosh rGt) + _ sinh ut

u = u cosh /•t - k sinh rGt (4.05)

-k cosh /Gt + MG sinh rt
0

In a building frame, h is of order 10-15 ft; hence

-2G 2-3 sec approx.
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which easily reduce to (1.03) when G -+ 0

The response velocity u vanishes at a time t = tf , given by

tanh Atf - 0k (4.06)

Since

0 < tanh x < 1 when 0 < x <

Eq. (4.06) yields a real positive total response time tf only if

o < (4.08)
k

If (4.08) is not verified, the velocity successive to the impulse never van-

ishes, i.e. the frame never comes to a stop and deforms up to complete col-

lapse.*

This result can be presented in several alternative ways. For example,

introducing (4.03), disequality (4.08) becomes

(m u )2 h -g < 1 (4.09)
0 (E M )2

0

and yieldsa limit relationship between the sum of the column flexural strengths

(possibly, modified by the axial loads), the storey height h , and the impulse

momentum m u that a rigid-plastic shear frame can absorb without complete

collapse.

The variation of velocity with time for several values of o h and theý h

relationship between 0h and the total response time, given respectively by

Remember, however, that the previous equations remain quantitatively valid
only as long as the displacement u is small in comparison with h
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the second Eq. (4.05) and by Eq. (4.06), are plotted with solid lines in Fig.

4.3; the dotted lines represent the relationships valid when the instabilizing

effect is neglected. The difference of behavior when (4.08) holds and when it

does not is very evident: in the latter case, the velocity decreases at first,

reaches a minimum and then increases monotonically up to the ruin of the frame.*

4.2 Periodic Load

The rest of the present section deals with the response given by Eqs. (4.01)

when the load function V =(t) is periodic-symmetric, as already defined by

Eqs. (1.06). Comparing Fig. 4.2 with the consideration developed in Section 1,

it is immediate that the response u(t) , although involving successive plastic

deformations of alternate signs, cannot be periodic: in fact, as soon as u 0 0 ,

an asymmetry of the effective strength tends to increase the residual displace-

ments of a defined sign, which build up during the successive loading cycles, un-

til the critical displacement

uc u(t k (4.10)

is reached, at which point the strength of the frame, with respect to horizontal

loads of either positive or negative sign, becomes zero.**

The critical time (or time to collapse) t can by physically defined byc

the ability acquired by the gravity loads, to cause by themselves collapse of

Similar results were obtained by Lee and Martin for a rigid-plastic column
subjected to a particular type of transverse impulse [1966], but at the ex-
pense of rather cumbersome algebra that made the ultimate results much less
immediately evident than the present ones.

Strain-hardening wifth Bauschinger effect would also cause a translation of
the strength interval (-k, +k), but in a stabilizing direction: the response
would tend to a periodic response, in which even the displacements are sym-
metric. Thus, if both strain-hardening and gravity loads are significant,
their effects are opposite to each other, and either can prevail. [Augusti,
1969].
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the frame. In other words, if a periodic loading E(t) is applied for a fi-

nite number of cycles n , the frame collapses (because of the constant axial

loads) if, and only if,

nT > t (4.11)c

or otherwise, if

n > n (4.11')c

where the critical number of cycles nc is defined by

n cT tc < (nc + l)T (4.12)

There is no conceptual difficulty in the numerical or analytical step-by-

step integration of Eqs. (4.01) for any given loading program, and in the di-

rect determination of the critical time tc or critical cycle nc , which will

of course depend on the characteristics of the frame and on the shape of the

loading function. Essentially this approach has been used in recent papers by

Jenning and Husid [1968] (where an elasto-plastic frame under an earthquake

load is examined, following earlier works by Housner [1959, 1960] who appears

to have been the first to discuss the phenomenon of collapse of plastic struc-

tural frames because of gravity loads) and by Ballio [1968] (who found an anal-

ogous behavior for a one-degree-of-freedom elasto-plastic column model and a

simple periodic loading). The numerical process would be greatly simplified in

any case by the rigid-plastic assumption: the response could be determined,

cycle by cycle, by a successive approximation procedure, as outlined below with

reference to Fig. 4.4.

Suppose that the displacement unl [hence, the effective strengths (k -

-GU n) and (-k - Gu n)] at the beginning of the nth cycle are known. Assume,

as a first approximation, a straight line r for the further variation of Gu
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and perform the integrations described in Section 1 from tnl up to a tenta-

tive tn2 : introduce the diagram of u , thus obtained, in the acceleration

diagram (Fig. 4.4a), and repeat the operations until the resulting tn2 and

Aunl are stabilized. The same procedure is then used to obtain tn4  and Aun2.

It can be noted that, if

E < 2k (4.13)

the negative-velocity phases disapper (i.e., Au 0 ) before the critical
n2

displacement u is reached.

4.3 Direct Determination of the Critical Cycle n Under Periodic LoadingC

For any practical structure, n can be expected to be rather large: inc

fact, if a structure is at all intended to undergo periodic loading, it is cer-

tainly required to be able to withstand more than a few cycles. In this case

the rigid-plastic assumption appears to become really convenient, in that it

will allow the direct determination of bounds to n without following thec

whole response history, as outlined below. It is still an open question whether

the critical times thus calculated are realistic, although rough, approximations

of the critical time of the actual, elastic-plastic frame.

The case corresponding to Case I of Section 1.1 is discussed first.

It is self-evident from Fig. 4.4 that the net variation of u in each

cycle

un - un1 =: Aunl - Aun 2  (4.14)

increases with n : hence

un > n(Au1 1 - Au1 2 ) (4.15)
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where the displacement increments during the first loading cycle (Au1: , Aul 2 )

can be obtained as in Fig. 4.4, with a zero initial displacement

Un_1 = U° = 0 (4.16)

Eqs. (4.10) and (4.15) give an upper bound to n in the formc

k
n <nc+ G(AIA) (4.17)

To determine a lower (safe) bound to n , suppose that a displacementc

Um_1 can be chosen, such that performing the operations in Fig. 4.4,

k
u 1 + Aum

(4.18)
k

u+ Au
m (m+l)l G

In other words, if um_1 were actually the displacement at the beginning of
th

the m cycle, m n . Then, by the same argument leading to (4.17),c

kn >n ( l_ )
c c- G(Au Au (4.19)

ml .m2

The bounds (4.17) and (4.19) are diagrammatically indicated in Fig. 4.5a.

A value for uM_ 1  can be obtained in the following way (Fig. 4.6a).

Choose a time tm2 , draw a line r such that Aml = Am2 ' then perform the

integrations in Fig. 4.4 starting from tml and the corresponding Um_1

and repeat until
k

U(tm) u + AUm =-. (4.20)
m2 n-1 ml G

If (4.13) holds,

-(k + Gu) = -2k < • at t = tm2 (4.21)
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and (4.18) are certainly verified. But note that if n is large as assumed,C

the inclination of r must be very small, and

t t + T (4.22)
m2 ml

therefore, it seems fair to assume that (4.21) holds also if (4.13) does not,

with the only exception of loading programs of the type shown in Fig. 4.6b.

Even in this very particular case, however, the procedure of Fig. 4.6a yields

a very small Aum2 , so that it can be assumed that (4.18) are again verified.

Consider now the case in which, if the effect of the axial loads were

neglected, the conditions of Section 1.2 (or the so-called Case II) would be

realized. Comparing Eqs. (4.15) and (1.28), it can be noted that the two oppo-

site effects interact; however, in the long range, the instabilizing effect

does prevail.

If the final residual displacement (neglecting axial loads) uR is much

smaller than the critical displacement u , it could be (unsafely) neglected

altogether. In this case, Au 1 and Au12 to be introduced in (4.17) must

be computed starting from u = 0 and t* determined as in Fig. 1.4.
0 11

Conversely, if uR can be at least approximately evaluated, it is safe

to consider it acting from the very beginning of the loading: then, instead

of n , a smaller number n* is defined (Fig. 4.5b) and bounded between
c c

kk - uR
n* ~G R

c+ Au* -Au*
11 12

(4.23)

k
n* - G- uR

c- Auml-Aum2
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Here, Au* and Au* must be determined with
11 12

U 1  U uR (4.24)

Even more simply, let Au be the increment of displacement during a load-

ing cycle calculated in the assumption that the (effective) shear strength of

the frame is constantly nil (Fig. 4.7). Au is an upper bound to the displace-

ment of the frame in each cycle for both Cases I and II, so that a safe value

of n is given very quickly by

n - (4.25)

GAu

Noting that

t(nl)l t t t(n+l)1
AU dt dt = (t- tnl()ni dt (4.26)

tnl tnl tnl

is the first moment with respect to t = tnl of the two equal areas A01 and

A0 2  in Fig. 4.7a (each taken with its sign) and that, because of (1.06), the

centroids of A01 and A02 are T/2 apart, it is immediate that

AuAa 4 (4.27)u=A01 2 a 4

where a is the average absolute value of C(t) . In other words, the incre-

ment of displacement in a frame of zero strength during a cycle of periodic-

symmetric loading, does not depend on the shape of the loading function, but

only on its average value and the square of its period.

Introduction of (4.27) and (4.03) into (4.25) yields

ZMn = 4J kh o
c- = 4 2 = 2 EW (4.28)

a a •
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Although Eq. (4.28) can only be expected to give a very rough lower limit on

n , it may be used to evaluate the qualitative effect of some parameters.c

Of course, the motion of a rigid-plastic frame is excited only if the

maximum value of the load, E M is larger than the frame strength k . In

other words

ni --0- i (4.29)
c k

Thus, any curve or formula for n has a lower cut-off, that can be written

in the form

a a (4.30)

m

The ratio Ea/Am is comprised between 0.5 and 1 for any "reasonable" loading

function E(t) . Eqs. (4.28) and (4.30) are plotted in Fig. 4.8.

Finally, it is worth noting for comparison that, after lengthy numerical

calculations of the responses of an elastic-plastic frame subject to random

loading functions and statistical analyses of the results, Jennings and Husid

concluded, in their already quoted paper [1968], that the average time to col-

lapse was proportional to the storey height and to the square of the ratio be-

tween the strength of the frame and the average intensity of the ground acceler-

ation; they did not investigate the effect of the frequency of the load. Intro-

ducing the present symbols and denoting by C an appropriate constant, Jennings

and Husid's results can be represented by

(n T) Ch(--) (4.31)
c avg Ea

The qualitative agreement between Eqs. (4.28-30) and Eq. (4.31) is remarkable:

it has been shown [Augusti, 1969] that the quantitative agreement is also fairly

good, and this would seem to support the opportunity for further researches of

the type set forth in the present report.
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SUMMARY AND CONCLUSIONS

The present report has discussed several aspects and examples of behavior

of rigid-plastic structures subjected to dynamic loading.

In particular, in Section 1 it has been shown that the response of strength-

symmetric structures to periodic-symmetric loading (in absence of the instabiliz-

ing effect examined in Section 4) is, or rapidly tends to, a periodic motion. In

other words, the structure shakes down to a rigid-plastic vibration of limited

amplitude and the same period as the external agency. The total accumulated

plastic work (high strain fatigue) becomes the key factor of design.

Whenever the response mechanism is unique (as it is shown to be usually the

case for plane shear frames subjected to horizontal loads), very simple semigraph-

ical operations allow both to follow the response cycle by cycle and to determine

directly the final (or steady-state) motion.

It has not been found possible, for a general loading program, to obtain a

simple but rational approximation of the response, such as the mode approximation

proposed by Martin and Symonds [1966] for impulsive loading problems and recently

extended to single-pulse loads. In the particular case of plane shear frames,

however, even the multi-mechanism response is governed by very simple relations.

On the contrary, the dynamic response of three-dimensional shear frames

(studied in Section 3) is of rather cumbersome determination because two inter-

acting degrees of freedom are involved, except in some very special cases. For

example, the response to a periodic load is given by a cyclically variable, but

in most cases never vanishing, horizontal velocity vector. It is, on the other

hand, possible to define principal directions, such that if the load is parallel

to one of them the response is one-degree-of-freedom and distinguish them in

stable and unstable.
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Finally, in Section 4, the effect of constant gravity loads on the response

of plane shear frames has been examined. Firstly, impulsively loaded frames

have been considered, and a relationship has been established between the total

column strength, the height of the ground storey, and the momentum that the

frame can absorb without collapsing.

Then, it has been shown that, under periodic loads, plastic deformations of

alternate sign develop, but the residual displacement increases with the loading

cycles until, when a critical displacement is reached, the gravity loads become

able to cause by themselves collapse of the frame. Formulae have been proposed

to bound the number of cycles necessary to reach the critical displacements.

Both high strain fatigue and collapse by gravity loads may be significant fac-

tors in the design of such frames.

Applications and numerical examples of the procedures outlined in this re-

port are at present being developed and will be included in later papers.

The whole treatment presented here has been limited to the consideration of

rigid-perfectly plastic behavior and has therefore the same limitations of all

previous works which have been based on the same assumption. These limitations

will not be discussed here, but it seems appropriate to note that two of them

might be particularly relevant for the sort of problems treated in this report;

namely,

a) the yield stress (or yield profile) varies with the rate of

deformation; this variation may not only cause quantitative

differences (as in all dynamic plastic problems) but also

alter the interaction between the different degrees of free-

dom.

b) the elastic deformations under a periodic loading can be in-

creased by resonance; their effect might be assimilated to
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a substantial reduction of the (apparent) plastic

strength.

While it must be stressed that the present study has no pretense to be

conclusive, and that the above problems (and many others) can furnish a wealth

of material for further investigations, it is also fair to remark that the sim-

plifications inherent in the rigid-plastic assumption have allowed to obtain

some fairly general indications regarding problems either never tackled before

or solved only numerically.
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NOTATION

A,, A2  areas (integrals of acceleration)

B. axis of jth column (in horizontal plan)

C, C axis and center of (elementary) rotation, Figs. 3.1-3.2

CG, C p centroid and plastic shear center of frame in Fig. 3.1

F total force (including inertia term)

f line of action of force P

G parameter measuring the instabilizing effect of vertical
loads in Eqs. (4.01)

g acceleration of gravity

h height of storey

I intersection of n and yield profile

i suffix for generic storey, loading cycle, etc.

J. number of columns at ith storey of frame1

k strength parameter

L total loading point or terminal point of vector • - u
(Fig. 3.4 ff.)

Z beam span (Fig. 2.1)

M bending moment

M limit (full yield) moment
0

m mass

N number of storeys in frame

n number of loading cycles (also, suffix)

nc "critical" number of cycles

0 origin of reference axes or vectors
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P applied force

p, q suffixes denoting particular storeys in multi-storey
frame

T period of time-dependent loads

t time

t "critical time" or "time to collapse" (Section 4.2)c

tf total response time for impulsive loading

U terminal point of vector u (Fig. 3.6 ff.)

u displacement

u velocity

u acceleration

g ground acceleration

"uR residual displacement

"uS S .S "steady state" displacement, velocity, acceleration

Vi total shear force at ith storey

Voi limit shear force (shear strength) of ith storey

v curve of points U

W vertical loads on frame

X loading point, or terminal point of vector ý (Fig.
3.4 ff.)

x, y coordinate axes (also, suffixes for x- and y-compon-
ents of vectors)

Au displacement increment

n principal direction of yield profile t

S = (t) load parameter (function of time)

•a average absolute value of V(t)

E maximum value of U(t)

m•"' ' aii a
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yield profile

* = 0 equation of yield profile

Notes:

a) Underlined symbols indicate vectors (e.g. u , etc.)

b) Many other suffixes, asterisks, etc., have been often used

to qualify several symbols.
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LIST AND CAPTIONS OF FIGURES

Figure 1.1 - Simple example of dynamically loaded structure.

Figure 1.2 - Periodic-symmetric loading; Case I.

Figure 1.3 - Periodic-symmetric loading; Case II.

Figure 1.4 - Periodic-symmetric loading; Case II. Periodic solution.

Figure 2.1 - Different multiple-mechanism behaviors of a dynamically-
loaded simply-supported beam.

Figure 2.2 - Shear frame.

Figure 2.3 - Two-mechanism motion of rigid-plastic shear frame. (Load
and acceleration diagrams.).

Figure 2.4 - Two-mechanism motion of rigid-plastic shear frame. Steady
state solution.

Figure 3.1 - Three-dimensional shear frame.
.th

Figure 3.2 - Moment and shear yield profiles of j column; normality
rule.

Figure 3.3 - Total shear yield profile and lines of action of forces
causing translational collapse of a platform supported on
three columns.

Figure 3.4 - Dynamic loading of three-dimensional shear frame when C
CG * P

Figure 3.5 - Yield profiles and principal directions n

Figure 3.6 - Response to impulse u . General yield profile.-O

Figure 3.7 - Response to impulse u . Particular example.-O

Figure 3.8 - Motion with a "strip" yield profile (ky = 00)

Figure 3.9 - Response to periodic loading (rectangular yield profile;
both load components in Case II).

Figure 3.10 - Steady-state velocities for loading in Figure 3.9.
Figure 3.11 - Response to periodic loading (rectangular yield profile:

x-component in Case I, y-component in Case II).

Figure 3.12 - Steady-state velocities for loading in Figure 3.11.
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Figure 3.13 - Determination of sign of steady-state movement of L
and U .

Figure 4.1 - Shear frame under horizontal and vertical loads.

Figure 4.2 - Motion of frame subjected to horizontal loads ý(t) and
constant vertical forces.

Figure 4.3 Response of frame subjected to constant gravity forces
and a horizontal impulse: a) velocity of deformation
16 vs. time t and initial Velocity u ; b) initial0

velocity Ui vs. total response time tf

Figure 4.4 - Frame subjected to periodic horizontal load and constant
vertical forces; determination of nth cycle of response.

Figure 4.5 - Bounds to the critical number of cycles n : a) Case I;
b) Case II. c

Figure 4.6 - Final cycle of loading.

Figure 4.7 - Cycle of loading with zero effective strength.

Figure 4.8 - Approximate lower bound to the critical number of cycles.
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